What is Machine
Learning, Really?
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Artificial Intelligence
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Artificial Intelligence is
the ability of a digital
computer or robot to
perform tasks commonly
associated with
intelligent beings
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What is Machine Learning?









Machine learning is a
field of computer science
that gives computers the
ability to learn without
being explicitly
programmed
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Example: Student Performance

e You have the high school + college GPA of
every student ever at UCD

e You want to know, given a new applicant,
what their future GPA at UCD is likely to be



HIGHSCHOOL GPA

GRADUATED GPA

3.3 3.5
2.3 3.0
3.9 3.5
2.6 2.2
2.0 2.5
3.4 3.8
2.2 2.5
3.5 3.7
2.9 3.1




HIGHSCHOOL GPA’ GRADUATED GPA <
3.3 3.5
2.3 3.0
3.9 3.5
2.6 2.2
2.0 2.5
3.4 3.8
2.2 2.5
3.5 3.7
2.9 3.1
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h(x) = ¥

This iIs what we want

A magic function



The goal of ML is never to
make "perfect” guesses,
because ML deals in
domains where there is
no such thing. The goal is
to make guesses that are
good enough to be useful.



Technique #1

Linear Regression



h(ix) =W X +Db

Linear Regression
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grad

h(x) = 0.3*x + .1
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How do we iterate?

First, we need to figure
out what it means for our
model to be "better”



J(W.b)= £(Y-Y)?

Cost Function

Aka: How wrong are we?



Cost Function = J(W.b)= Z(Y-Y)?

e Basically we add up how different our guess
was from the real value for every row of data

e If ourlineisn’t very good, we get a big value
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grad

W=.3, b=.1

J(W,b) = 1936.38
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grad

W=.49, b=1

J(W,b) = 145.89 <
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How do we go from a bad
model to a better model?

Gradient Descent



J(W,b) = Z(Y-Y)z W#*x + b and cost




So let’s start by making a
guess...



Start by picking random numbers

DILBERT fy ScoTt Apass

TOUR OF ACCOUNTING

OVER HERE

WE HAVE OUR
RANDOM NUMBER
GENERATOR.
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YOU CAN
NEVER BE
SURE.




Step 1: Randomly pick
starting point

W*x + b and cost




Step 2: “Look” around and
figure out which way is down

W*x + b and cost




Step 3: Take a step down

W*x + b and cost




Step 4: Do over and over
again

W*x + b and cost




Step 5: S_top when you are W*x + b and cost W = 0.46543113
happy with results b =1.10899316704




Now our machine has
“learned” the solution
which minimizes our cost



Error = 370.77 15 1 B R B




What if we have more
features?



HighschoolGPA & SAT
Score to predict
Graduation GPA




What if we aren’t trying
to predict a number?



HIGHSCHOOL GPA

GRADUATED Status

3.3 DROPPED
2.3 GRADUATED
3.9 GRADUATED
2.6 GRADUATED
2.0 DROPPED
3.4 GRADUATED
2.2 DROPPED
3.5 GRADUATED
2.9 GRADUATED




HIGHSCHOOL GPA

GRADUATED Status
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Highschool GPA
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Two Machine Learning problem types

Regression Classification
e Outputis a number e Outputis a category (or
e Use linear regression categories)

e Use logistic regression



What if your relationship
Is complex?



What if your relationship is complex?

e Add more data features and combine them
together

HighSchoolGPA * TransferUnits?



What if your relationship is complex?

e Make your relationship function more complex.
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What if your relationship is complex?

e Do the same thing, but a whole bunch of

times! 5 g
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\ 10
11




X W*x+b Y
(Linear
regression)

(High School GPA) (Our prediction)
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Neural Network




Input Hidden Qutput

Layer Layer Layer

Input 1

Input 2

Qutput

Input 3

Input 4

Input 5






DEMO: Neural Networks



What about different
data types, like images?
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28 x 28
784 pixels
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DEMO:
Image Recognition



Deep Neural Network
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edges combinations of edges object models



Inception Resnet V2 Network

Compressed View
10x

Convolution

' MaxPool

' AvgPool

' Concat
@ Dropout
@& Fully Connected
& Softmax

@ Residual

20x

10x



Machine Learning is
powerful, but it’'s just
data+math (and fast
computers)!
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