What is Machine Learning, Really?

Scott Kirkland AppDev SIG 12/12/17

Artificial Intelligence

Artificial Intelligence is the ability of a digital computer or robot to perform tasks commonly associated with intelligent beings

What is Machine Learning?

Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed

Example: Student Performance

- You have the high school + college GPA of every student ever at UCD
- You want to know, given a new applicant, what their future GPA at UCD is likely to be

HIGHSCHOOL GPA	GRADUATED GPA
3.3	3.5
2.3	3.0
3.9	3.5
2.6	2.2
2.0	2.5
3.4	3.8
2.2	2.5
3.5	3.7
2.9	3.1

X	Y
HIGHSCHOOL GPA	GRADUATED GPA
3.3	3.5
2.3	3.0
3.9	3.5
2.6	2.2
2.0	2.5
3.4	3.8
2.2	2.5
3.5	3.7
2.9	3.1

This is what we want

A magic function

The goal of ML is never to make "perfect" guesses, because ML deals in domains where there is no such thing. The goal is to make guesses that are good enough to be useful.

Technique #1

Linear Regression

$h(x) = W^*x + b$

Linear Regression

How do we iterate?

First, we need to figure out what it means for our model to be "better"

$J(W,b) = \Sigma(\hat{Y}-Y)^2$

Cost Function

Aka: How wrong are we?

Cost Function = $J(W,b) = \Sigma(\hat{Y}-Y)^2$

• Basically we add up how different our guess was from the real value for every row of data

• If our line isn't very good, we get a big value

How do we go from a bad model to a better model?

Gradient Descent

So let's start by making a guess...

Start by picking random numbers

DILBERT By Scott Adams

Now our machine has "learned" the solution which minimizes our cost

What if we have more features?

What if we aren't trying to predict a number?

HIGHSCHOOL GPA	GRADUATED Status
3.3	DROPPED
2.3	GRADUATED
3.9	GRADUATED
2.6	GRADUATED
2.0	DROPPED
3.4	GRADUATED
2.2	DROPPED
3.5	GRADUATED
2.9	GRADUATED

HIGHSCHOOL GPA	GRADUATED Status
3.3	0
2.3	1
3.9	1
2.6	1
2.0	0
3.4	1
2.2	0
3.5	1
2.9	1

Logistic Regression: σ

$$\sigma(t) = rac{e^t}{e^t+1} = rac{1}{1+e^{-t}} \, .$$

Where $t = W^*x + b$

Two Machine Learning problem types

Regression

- Output is a number
- Use linear regression

Classification

- Output is a category (or categories)
- Use logistic regression

• Add more data features and combine them together

HighSchoolGPA * TransferUnits?

• Make your relationship function more complex.

Do the same thing, but a whole bunch of times!

Neural Network

input layer

hidden layer 1

hidden layer 2

output layer

DEMO: Neural Networks

What about different data types, like images?

									120
	100	230				54_,			
	120 230					54		*	
	80	42				90			
						200		-	
	20	121		128		250			250

	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		pixel 1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		pixel 2
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		pixel 3
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		pixel 5
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		pixel 4
	0	0	0	0	0	0	0	0	0	0	4	62	146	182	254	254	181	176	139	15	0	0	0	0	0	0	0	0		pixel 5
	0	0	0	0	0	0	0	0	0	34	186	253	217	208	136	136	136	166	232	99	0	0	0	0	0	0	0	0		pixel 6
	0	0	0	0	0	0	0	0	61	242	208	111	3	0	0	0	0	0	18	32	107	43	0	0	0	0	0	0		piner e
	0	0	0	0	0	0	0	0	156	242	23	0	0	0	0	0	0	0	13	191	181	6	0	0	0	0	0	0		pixel 7
	0	0	0	0	0	0	0	0	121	255	98	3	0	0	0	0	0	8	194	225	12	0	0	0	0	0	0	0		pixel 8
	0	0	0	0	0	0	0	0	0	169	253	120	160	10	0	14	124	128	247	51	0	0	0	0	0	0	0			pixel 9
	0	0	0	0	0	0	0	0	0	0		50	241	225	72	142	220	249		0	0	0	0	0	0	0	0			nivel 10
	0	0	0	0	0	0	0	0	0	0	0	09	241	230	254	231	36	00	0	0	0	0	0	0	0	0	0		1	pixel 10
\rightarrow	0	0	0	0	0	0	0	0	0	0	0	0	0	133	253	221	33	0	n	0	0	0	0	0	0	0	0	0	<	pixel 11
	0	0	0	õ	0	0	õ	0	0	õ	0	0	19	237	111	196	217	19	0	0	0	0	0	0	õ	0	0	0	۱ ا	pixel 12
	0	0	0	õ	0	0	õ	0	0	0	ō	0	174	138	0	23	193	204	18	0	0	0	õ	0	0	õ	0	0		pixel 13
	0	0	0	0	0	0	0	0	0	0	0	96	224	0	0	0	25	218	169	3	0	0	0	0	0	0	0	0		phone
28 x 28	0	0	0	0	0	0	0	0	0	0	0	215	138	0	0	0	0	86	253	99	0	0	0	0	0	0	0	0		pixel 14
784 pixels	0	0	0	0	0	0	0	0	0	0	0	215	97	0	0	0	0	3	162	214	11	0	0	0	0	0	0	0		pixel 15
ro4 pixels	0	0	0	0	0	0	0	0	0	0	0	215	97	0	0	0	0	0	118	253	68	0	0	0	0	0	0	0		pixel 16
	0	0	0	0	0	0	0	0	0	0	0	185	157	0	0	0	0	0	40	254	98	0	0	0	0	0	0	0		pixel 17
	0	0	0	0	0	0	0	0	0	0	0	50	244	61	0	0	0	0	112	244	58	0	0	0	0	0	0	0		pixel 17
	0	0	0	0	0	0	0	0	0	0	0	0	174	251	142	59	83	167	244	111	0	0	0	0	0	0	0	0		pixel 18
	0	0	0	0	0	0	0	0	0	0	0	0	6	133	253	253	253	169	61	3	0	0	0	0	0	0	0	0		pixel 19
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		pixel 784

DEMO: Image Recognition

Inception Resnet V2 Network

Compressed View

Machine Learning is powerful, but it's just data+math (and fast computers)!

Scott Kirkland

AppDev: 12/12/2017